Asymptotic analysis of hedging errors in models with jumps

نویسندگان

  • Peter TANKOV
  • Ekaterina VOLTCHKOVA
چکیده

Most authors who studied the problem of option hedging in incomplete markets, and, in particular, in models with jumps, focused on finding the strategies that minimize the residual hedging error. However, the resulting strategies are usually unrealistic because they require a continuously rebalanced portfolio, which is impossible to achieve in practice due to transaction costs. In reality, the portfolios are rebalanced discretely, which leads to a ’hedging error of the second type’, due to the difference between the optimal portfolio and its discretely rebalanced version. In this paper, we analyze this second hedging error and establish a limit theorem for the renormalized error, when the discretization step tends to zero, in the framework of general Itô processes with jumps. The results are applied to the problem of hedging an option with a discontinuous payoff in a jump-diffusion model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing for Jumps: A Delta-Hedging Perspective∗

We measure asset price jumps by the hedging error they induce on a delta-hedged position of European options. Based on high frequency data, we propose a nonparametric estimator for this measure and a test for its positivity. We further construct a Kolmogorov-type test for the presence of jump hedging errors for a possibly infinite-dimensional family of options based on the worst-case contract i...

متن کامل

Stochastic functional population dynamics with jumps

In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...

متن کامل

Hedging Volatility Risk

Volatility derivatives are becoming increasingly popular as means for hedging unexpected changes in volatility. Although pricing volatility derivatives demands extreme care in modeling the underlying volatility process, not much attention has been devoted to the complete specification of the autonomous process that volatility follows in continuous time. Despite the fact that jumps are widely co...

متن کامل

Dynamic Hedging of Portfolio Credit Derivatives

We compare the performance of various hedging strategies for index collateralized debt obligation (CDO) tranches across a variety of models and hedging methods during the recent credit crisis. Our empirical analysis shows evidence for market incompleteness: a large proportion of risk in the CDO tranches appears to be unhedgeable. We also show that, unlike what is commonly assumed, dynamic model...

متن کامل

Analysis of the Dynamic Optimal Hedging Ratio and its Effectiveness by M-GARCH Models: A Case Study for Iran Crude Oil Spot Price

Hedging the risk of crude oil prices fluctuation for countries such as Iran that are highly dependent on oil export earnings is one of the important subject to discuss. In this regard, the main purpose of this study is to calculate and analyze the optimal dynamic hedging ratio for Iranian light and heavy crude oil spot prices based on one-month to four-month cross hedge contracts in New York St...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007